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Abstract A rakz simple completely integrable Hamiltonian with a chaotic classical scattering 
map is analysed in quantum mechanics. After the analytical computation of the S-matrix 
we investigate numerically the disuibution of scauering phases. giving he nearest-neighbour 
distribution, lhe number variance and the Fourier transform of the spec” .  We find fair 
agreement with the random matrix prediction for the circular orthogonal ensemble (COE) as 
appropriate for the time-reversal invariant system with a chaotic scattering map. This example 
confirins that coe properties of the S-matrix do not necessarily indicate topological chaos in the 
flow generated by the classical Hamiltonian. 

1. Introduction 

The relation between classical chaos and random matrix fluctuations [ 11 in the corresponding 
quantum systems is based on three types of analysis. First and most common is the numerical 
analysis of simple quantum systems. Most of these analyses refer to energy spectra [2-9]. 
Some similar considerations exist for quasienergies [lo, 111 while work on the S-matrix is 
very limited [12]. The second type of analysis was introduced by Beny [13], who derived 
the Gaussian orthogonal ensemble [ 11 two-point function from the Selberg-Gutzwiller trace 
formula; this work was generalized by Bliimel and Smilansky [ 141 to the quasi-energies and 
eigenphases of S-matrices. A general proof not limited to two-point functions was given in 
[15,16], based on unitary representations of the sbuctural invariance group of the chaotic 
scattering map. 

When considering quantum signatures of chaotic scattering systems we could use two 
different concepts of classical chaos: on one hand the usual definition of toplogical chaos 
for Hamiltonian flows, and, on the other hand, the chaoticity of the classical scattering map 
which is the classical counterpart of the S-matrix. Unfortunately the two concepts are not 
equivalent, and the less common notion of a chaotic scattering map seems to be relevant in 
this context if we follow [14-16]. 

One of the authors (U) has given examples 117,181 for situations where integrable 
Hamiltonians lead to chaotic scattering maps. In [19] the quantum properties of such 
systems were studied; yet these systems have the drawback that the ‘free’ Hamiltonian is 
complicated and possibly ambiguous. This is particularly disturbing as the definition of a 
chaotic scattering map depends sensitively on the interplay of the full Hamiltonian and the 
free Hamiltonian [17]. 

It thus seems of interest to study in quantum mechanics the simplest Hamiltonian 

H = p;/Z + (p: +cos(@) + c) /2r2  (1) 
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given in [18]. Here r ,  + are polar coordinates in position space, p , .  p+ are the conjugate 
momenta and c is a free constant. We shall find that the S-matrix can be obtained analytically 
as we may expect for an integrable system, yet the eigenphases display COE (circular 
orthogonal ensemble [I]) statistics as required for a quantum analogue of a chaotic scattering 
map. Thus we see that both aspects of chaos are relevant to the quantum scattering system. 

In order to proceed let us start by giving a few definitions and relations to clarify the 
two relevant notions of scattering chaos. 

Topological chaos may be defined as follows. In the open energy surface there exist 
unstable periodic orbits having transverse homoclinic and heteroclinic connections leading 
to topological chaos in the Row and to a Smale horseshoe in some appropriate Poincar.6 map. 
This, in turn, implies the existence of a chaotic saddle in the phase space having an infinity 
of unstable periodic orbits and an over countable number of localized non-periodic orbits. 
The invariant manifolds of the localized orbits reach into the asymptotic region causing 
singularities of the scattering functions (deflection function, time delay function etc) on a 
fractal subset of their domain. 

The classical counterpart of the S-matrix is the classical iterated scattering map M 
which can be constructed as follows (see also [20-22]). M maps the set of all incoming 
scattering asymptotes into itself by the following construction. Given the initial asymptote 
A construct the full scattering trajectory starting with A,  it ends in the-outgoing asymptote 
B. Apply the time reversed free Row generated by HO on B in order to turn it back into an 
incoming asymptote C .  Define M(A) = C .  

For a system with two degrees of freedom M acts on a two-dimensional domain and 
a numerical investigation of M is done in the spirit of a Poincar6 return map. Take a few 
initial points and iterate them numerically a large number of times by M. If the map M is 
integrable then all iterates of any initial point lie on one-dimensional lines. If the map is 
chaotic then the iterates of some initial points fill in densely a subset of higher dimension. 

Whenever the Hamiltonian is completely integrable then the existence of horseshoes 
and of topological chaos in the flow is impossible. Surprisingly, the complete integrability 
of the Hamiltonian H does not necessarily imply the integrability of the classical scattering 
map or, equivalently, of the S-matrix. If K is a conserved quantity of H, i.e. [K, H ]  = 0, 
then K implies a conserved quantity J of S only if the asymptotic forward limit K+ and 
the asymptotic backward limit K- of K are equal among themselves, i.e. if 

K+ = K- 

Here the asymptotic limits of K are defined classically as 

K* = lim K o F(-T)  o Fo(T) 
T-** (3) 

where F and FO are the flow maps of the full Hamiltonian H and of the free asymptotic 
Hamiltonian Ho respectively. Quantum mechanically the asymptotic limits of K are given 
by 

where S2* are the Moller operators. Integrability of H is transferred to M only if the 
conserved quantities of H fulfil the asymptotic condition (2). For details and proofs of all 
these statements see [17,18]. 



Chaotic scattering 1509 

2. The S-matrix 

Let us consider the scattering of a mass point of mass m = 1 off a local potential in a 
two-dimensional position space. In polar coordinates (r. @), the potential has  the form 

~ ( r ,  4) = f(cos(@))/2r2. (5) 

The function f has to be positive in order to avoid any problems with attractive singularities. 
The free asymptotic Hamiltonian is the kinetic energy 

H~ = p p / 2  + p: /2rz  (6) 

where p , ,  p~ are the momenta conjugate to ( r ,  @). It is obvious that the full Hamiltonian 

H = H o + V  (7) 

separates in polar coordinates and has the independent second conserved quantity 

K = P i  + f(cos(4)). (8) 

Because of the homogeneity of the potential of degree -2 we not only have scaling but, 
for the S-matrix, there is, in fact, no energy dependence at all. We restrict all numerical 
computations to the single energy value E = 0.5. For a two-dimensional system the cross 
section contains the trivial over all energy factor E-'/'. 

There are no localized orbits and this prevents topological chaos in phase space. As a 
consequence each point in phase space belongs to a scattering trajectory having a proper 
incoming asymptote and a proper outgoing asymptote and there are no trajectories stuck 
in the interaction zone. Accordingly the classical scattering functions do not show any 
singularities. 

Considering that 
in the distant future the position angle coincides with the momentum angle for any 
outoing asymptote, we find as forward limit of the position angle @ the momentum angle 
tan-'(p, /p , ) .  This leads to p,/lpl for the forward asymptotic limit of cos(@), where IpI 
is the absolute value of the asymptotic momentum, i.e. IpI = (2E)' /*.  In the same way the 
backward limit of @ is t a n - ' ( p y / p x )  + n because in the distant past the position angle is 
just opposite to the momentum angle for any incoming asymptote, i.e. the backward limit 
of cos(@) is - p x / l p l .  This gives 

The asymptotic forward and backward limit of p$ is p$ itself. 

K+ = P; + f ( p x / i p l )  

K- = P; + f ( - P x / I P l ) .  

(9) 

(10) 

We see that K fulfils the asymptotic compatibility condition (2) only i f f  is an even function. 
I n  order to violate (2) we will later take the choice f(cos(@)) = cos(+) + c with c P 1 for 
the numerical computations presented in section 3. 

In order to construct the quantum S-matrix for system U) we start by constructing the 
eigenfunctions and eigenvalues of K ,  i.e. we find the solutions of 
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with the periodic boundary conditions x j ( @  + 2 x )  = x j (@).  This is a version of the 
Mathieu equation. Because H is invariant under the symmetry @ + -@ we obtain an 
infinite sequence of symmetric solution functions uj(@) with eigenvalues hj. j = 0,1,. . . 
and an infinite sequence of anti-symmetric solution functions bj($)  with eigenvalues bj, 
j = 1,2, . . .. Let the indices be chosen such that A, and pj are ordered monotonically. 

We represent the eigenfunctions aj and bj by the coefficients aj,x and bj,k of their 
decompositions into trigonometric functions according to 

where gar(@) = sin(l@)x-’/’ for I > 1. For j -+ cm we find A j  -+ @ j 2 ,  U ~ J  + J j , ! ,  

4 h2j2 ,  bj.1 + 8j.r. The orthonormality rzoaj,rat, i  = 8j. t .  Cl=’ bj.1bk.r = 8j.x will be 
useful later in several places. Without loss of generality we choose the free phases of gs 
and ga such that these functions and also all a j ,~  and bj,! are real. 

m 

Next we need the general solution of the full Schrodinger equation 

For a symmetrical solution we make the ansatz 

For an anti-symmetric solution we make a corresponding ansatz with the angular functions 
bj (4). 

Inserting (15) into (14) gives for hj the equation 

where the regular solution is the Bessel function 

hj ( r )  = JA;~,, ,((2E)’/2r/fi) .  (17) 

Inserting this into (15) and performing the asymptotic expansion of the Bessel function for 
r + 00 gives the asymptotic form of @ 

@ ( r ,  $) -+ c g s r ( @ )  ~ u j . ~ d j f i ” ” x r ( 2 E ) ’ ’ 2 ) - ’ ~ Z [ e x p ( i ( ( 2 E ) 1 ~ Z ~ / ~  - Aj/*z/2h - x/4)) 
m m 

f=O j=O 

+ exp(-i((ZE)”’r/h - A j  I/’ x /  Zh - x/4))] (18) 



Chaotic scattering 151 1 

The incoming wave contribution to angular momentum ih, which is given by 
h ’ W 7 r r ( 2 ~ ) l / ~ ) - ‘ / ~  exp(- i ( (2E)’4/~1-  n/4 - In/Z))gs!(4) 

has the coefficient 
m 

DI = xa , . rd j  exp(i(A;%/2h - ia/2)). (1% 
j=O 

Next we choose for the incoming wave the boundary condition at infinity of only a 
contribution to angular momentum kh. In order to obtain DI = 61.t we have to make the 
following choice for dl: 

(20) dl = d?’ = a1.k exp(-i(A;l2n/2h - kn/Z)) .  

Then the coefficient in front of the outgoing wave contribution to angular momentum ih, 
namely 

h1/’(2nr(2E)’/’)-’/’ exp(i((2E)’/*r/h - In/2 - n/4))gsl(q5) 

is just the S-matrix element in the gs representation, i.e. 
m 

S;,<m = r a j , l a j , k  exp(-i(A;/’n/h - (k + Z)n/2)). 

S z  = Cbj,,bj,kexp(-i(/L:’*n/h - (k  + I)n/2)). 

(21) 
j=a 

For the anti-symmetric part we obtain along the same lines 
m 

(22) 
j= l  

At this point we can show in a nice way the significance of the asymptotic compatibility 
condition (2). If K fulfils (2). i.e. i f f  is an even function such that V ( r ,  q5) = V ( r ,  @I+ n), 
then aj.1 = 0 and bj.1 = 0 if j ,  I are not both even or both odd. Then in all contributions in 
(21) and (22) which are not zero. we find that jiZ is even and therefore exp(i(f +j)n) = 1 
or 

exp(-iln/2) = exp(ijn) exp(iin/2) (23) 
and we can cast (21) into the form 

CO 

s:,:’” = aj.1 exp(inl/2) exp(-in(A;”/fi - j ) ) a j , k  exp(-ink/Z). (24) 
j =O 

Now S is just a unitary transform of the diagonal matrix .? with diagonal elements 

(25) 
In this case the K representation of S, given by (25), is diagonal and the symmetric scattering 
phases are given by 

.?;,? = exp(-in(Aj 112 / h  - j)). 

@j = -n(A;”/h - j). (26) 
These eigenphases cross, in general, when some parameter in f is changed such that 
condition (2) remains valid. An analogue computation holds for the anti-symmetric part of 
the S-matrix. 

If K does not fulfil (2) then (23) is not true for all non-vanishing contributions and 
accordingly the K representation of S is not diagonal, showing that K is not a conserved 
quantity of S. In this case the eigenphases of S do not cross under a parameter change of 
the function f .  We learn that the asymptotic compatibility of a second conserved quantity 
K is necessary in order to make S diagonal in K representation. 
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3. Eigenphase statistics 

Now we make the particular choice of equation (1): 

C Jung and T H Seligman 

f(cos(4)) = c 4- cos($) 

for the potential function f. where c > 1 in order to avoid an attractive singularity. Then 
the conserved quantity 

K = p; + c t cos($) 

of the Hamiltonian does not fulfil (2) and S is not diagonal in the K representation. One 
might object that besides K there could be another conserved quantity of H which fulfils 
(2) and which transfers to the S-matrix. This possibility can be ruled out by plots of the 
classical iterated scattering map M. As labels for the asymptotes we use the direction of 
the incoming momentum (Y = tan-’(p,/p,) and the angular momentum p 4 .  To each set of 
values of cr and p+ there exists exactly one incoming and one outgoing asymptote. 

In figure 1 we show how the scattering map changes from near integrable to chaotic 
as a function of the parameter c. For c = 4 we see the onset of chaos along a separatrix 
as well as numerous stable islands of various periods. For diminishing values of c we see 
the transition to a large-scale chaotic area. Note that the short-period islands disappear and 
only long-period islands survive at the edges of the chaotic band. We shall now proceed to 
a more detailed description of this transition which the reader mainly interested in quantum 
results may skip. 

For c to infinity the cos($) part of the potential which causes the non-integrability of 
M is negligible compared to the c part which conserves p, .  Of course, p+ is a conserved 
quantity of the free motion and it fulfils the asymptotic condition (2). Therefore in the limit 
of c + 00 the angular momentum becomes a conserved quantity of H and of M. The lines 
p+ = constant are invariant lines of M and M becomes a pure twist map where the line 
p+ = 0 has the winding number 112 and the winding number decreases monotonically to 0 
on both sides for -+ 00. For c becoming smaller M becomes a perturbed twist map 
where the quantity k = (c - 1)”  is the perturbation parameter. Lines of the pure twist map 
with rational winding numbers break into finite sequences of alternating stable and unstable 
periodic points. Around the stable periodic points KAM tori form and along the invariant 
manifolds of the unstable periodic points small chaotic strips emerge. In total we find the 
typical scenario of a perturbed twist map as analysed for the standard map 123,241. 

For larse c the chaos starts on tiny scales and for decreasing values of c we see 
numerically appreciable chaos at c = 4 for the first time. A numerical plot of the iterated 
map M for c = 4 is presented in figure i(a). For several initial points (marked by crosses) 
a few hundred iterates have been plotted. We observe a chaotic strip along the invariant 
manifolds of the unstable periodic point of period 2. For decreasing c two things happen. 
The KAM islands first become larger and, at the same time, the chaotic strips along the 
invariant manifolds of the unstable points also become larger and start to destroy the KAM 
island from the outside. In particular the chaos eventually destroys such invariant lines 
with irrational winding numbers, which run around all values of a, thereby forming a large 
global chaotic sea. Figure l(b) shows the situation for c = 3 where the chaotic strip 
originating from the unstable periodic point of period 2 has already merged with the chaotic 
strip belonging to the unstable periodic points of period 3. While the KAM islands are 
eaten away by the chaotic strips from the oulside, at the same time chaos already starts 
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-n n -n 
Angle Angle 

Figure 1. Plol of lhe cl3ssical iterated rcatlering mop for the pameler  values e = 4, 3, 2, 1.2 
in p m  (aHd) respeclively. A few hundred iterates of some initial p o i m  (marked by crosses) 
have been plotted. 

to grow in the inside. The central elliptic periodic point of the island becomes unstable 
in a period-doubling bifurcation creating periodic points of multiple pericd. In figure I(c) 
for c = 2 we observe very nicely how the periodic point of period 2 has already become 
unstable and has created a periodic point of period 4 close to it. All this happens behind a 
KAM line which screens this event from the large chaotic sea. For c = 2 the large chaotic 
sea has already reached the region of winding number 1/5. For c a little bit below 2 all 
large Scale KAM islands at small values of p+ are destroyed. A typical plot of M for this 
behaviour is given in figure I(d) for c = 1.2. There still exist very small KAM islands inside 
the large chaotic sea. They are not relevant for our further considerations. The chaotic 
sea also does not spread to arbitrarily large values of p+ As figure l(d) demonstrates it 
stops approximately at winding number 1/6. For larger values of p4 order always dominates 
even though there are very tiny chaotic strips associated with every rational winding number 
arbitrarily far outside. However, these tiny chaotic strips are also not relevant for our further 
considerations. 

Next let us turn to the numerical properties of the quantum S-matrix which is the 
quantization of the map M. Of course, in the S-matrix in the angular momentum 
representation indications of chaos can also be expected in a finite block only, which 
corresponds to the finite chaotic strip in the plot of the classical scattering map. In the 
classical plot in figure I(d) the strip strongly dominated by chaos reaches from pm = -1.2 
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to p4 = 1.2 approximately. Therefore we expect in the symmetric as well as in the anti- 
symmetric S-matrix a block of size 

C Jung and T H Seligman 

N = 1 2 / h  (29) 

to be dominated by chaos for small values of c. Beyond this block the S-matrix makes a 
transition to regular behaviour and for j 2 R 2  >> c the S-matrix approaches a diagonal form 
with scattering phases 

@j -3 -ac/(ZjRZ). (30) 

This asymptotic form holds for the symmehic as well as for the anti-symmetric part of the 
S-matrix. 

We wish to have reliable results for the eigenstates corresponding to the chaotic area 
which is largest for the smallest value c = I .5 which we use in quantum calculations. Using 
R = 0,001 25 this area corresponds to about 1000 to 1200 states for both the symmetric and 
the anti-symmetric case separately. In order to obtain these states reliably we diagonalize 
matrices of the size 3200 x 3200 on the CRAY Y M P  of ffniversidad National Autonoma 
de Mexico. 

To select the relevant block in this large S-matrix we can do something even better. 
We construct S in the K representation and select the block of size N x N with N given 
by (29). The K representation corresponds to a classical picture where the cos@) wave in 
figure 1 has been straightened out. Therefore in the K representation the cut-off between 
chaos and order is best given by a horizontal line. 

Number of eigenphose 

Figure 2. Relative fraction of incidences between symmetric and anti-symmetric eigenphases 
of lhe Smauix. Each data point shows the result of B block of eigenphases of length 50. The 
veltical crosses, open squares, inclined cmsses and open triangles corresoond lo c = 5 .  3.2. 1.5 
respectively. 1 = 0.001 25, 
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1 0  

0,a 

- 0.6 
h 
(II 

0. 

0 . 2  

0 

Figure 3. Nearest-neighbour spacing distributions of the eigenphases for the parameter values 
h = 0.001 25 and e = 5.3,2, I .5 in parts ( a n d )  respectively (full squares). From the symmetric 
and anti-symmetric S-mtrix a block of size N = 1000 has been evaluated. The symmetric and 
anti-symmetric results have teen averaged. P m  (a), (b) and (c) also mntnin the theoretical 
prediction for a random sequence (vertical crosses). P m  (c )  and (d) also contain the theoretical 
prediction of COE (inclined crosses). 

The choice of (29) has been justified by semiclassical arguments. There is a different 
justification completely within quantum dynamics. We compute the eigenphases @:". 
j = 0, I , .  . . of the symmetric S-matrix and the eigenphases @?, j = 1,2, . . . of the anti- 
symmetric S-matrix and check the coincidence of @ym with @;*. In the chaotic region there 
is no correlation between them whereas in the regular region we find - $71 c IO4 
for a large fraction of all eigenphases even though j is still far away from values where (30) 
holds. In figure 2 we plot the fraction of symmetric and anti-symmetric pairs of eigenphases 
that are within these limits as a function of the number of stam counted from the centre 
of the band and evaluated over blocks of 50 states. The four curves shown corresponds to 
values c = 5 ,  3, 2, 1.5. We note that the cut-off is clear for c = 1.5 and 2, while we obtain 
oscillating curves for the larger values of c. This is readily understood as in this parameter 
region integrable islands occupy most of the phase space. The numerical results in what 
follows are given for a choice of N = 1000 for the cut-off which we keep fixed when we 
vary e. 

In figure 3 we present the distribution of the nearest-neighbour spacings of the 
eigenvalues of the S-matrix for the values c = 5 ,  3,2, 1.5 of the potential constant in parts 
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(a)-(d) respectively. The results of the symmetric and the anti-symmetric S-matrix have 
been averaged because of their statistical independence. For comparison the corresponding 
curves for a COE and for a Poisson distribution have been included in some of the figures. 

For c = 1.5 in figure 3(d), where the classical map is dominated by chaos, the quantum 
result is very close to the COE behaviour. For c = 2 in figure 3(c) we see small deviations 
from the COB behaviour in parallel to the appearance of the first KAM tori around p+ = 0 in 
the classical plot of figure I(c). For c = 3 where classically the transition to global order 
takes place the quantum result is just in a transition to Poisson behaviour. For c = 5 in 
figure 3(a) where the classical chaos has diminished to invisible size, the quantum result is 
very close to the Poisson distribution which we expect for a completely integrable S-matrix. 
Only for very small distances d o  we see that the S-matrix is not completely integrable. 

C Jung and T H Seligman 

6 i " '  
-1 

4 '1' 
3 1  'i 1 

0 
0 2 4 6 8 10 

I 

1 2  ''I 
# 

o * ,  , ~ t 
a 2 4 6 8 10 

L 
Figure 4. E* statistics of the eigenphases for the parameter values 2 = 0.001 2.5 and c = 5.3.2, 
1.5 in p m  (a)-(d) respectively (full squms). From the symmetric and anti-symmetric S-matrix 
a block of size N = 1000 has been evaluated. The symmetric and anti-symmetric results have 
been averaged. Pm (a) also contains the theoretid prediction for a random sequence (vertical 
crosses). P m  (b). (e)  and (d) also contain the theoretical prediction of CO€ (inclined crosses). 

In figure 4 we present the corresponding Zz statistics for the same parameter values. 
Again the symmetric and anti-symmetric results have been averaged. For increasing values 
of c there is a transition from behaviour close to COE to a behaviour close to Poisson. This 
holds for small values of the distance L. For c = 1.5 in figure 4(d) the function rises linearly 
with a slope 1 over a very short distance only (interval from 0 to 0.3) whereas for c = 5 
in figure 4(a) this linear increase with slope 1 is maintained until L = 7 approximately. In 
addition for c = 1.5 the numerical result is always a little larger than the COE prediction 
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4 , , , , , , , . , c 

4 , , !  I , , , , , , , ,  
I 

0 0.2 0.4 0 6  0.8 1.0 1.2 
W 

Figure 5. Fourier transform of lhe spectrum of the S-matrix for the parameter values 
It = O.OQI25 Md c = 5 .  3, 2. 1.5 in parts (a)-(d) respectively (full squares). From the 
symmetric and anti-symmelric S-matrix a block of sire N = 1000 has been evaluated. The 
symmetric and anti-symmetric results have been averaged. Parts (a) and @) also contain the 
theoretical prediction for a random sequence (venical crosses). Parts (b), (c) and (d) also contain 
the theoretid prediction of CO€ (inclined crosses). 

and deviates significantly for L z 1.5. So we suppose that the S-matrix always has less 
long-range correlations in the spectrum than we expect for the COE. 

In order to obtain a better understanding of these long-range fluctuations we consider 
in figure 5 the Fourier transform of the spectrum of eigenphases, i.e. the function 

Again the Symmetric and anti-symmetric results have been averaged. On small frequency 
scales (order of w % 0.001) the function C oscillates wildly. Therefore in the figure we 
have averaged this function over a length of w = 0.01, however C(o) still shows strong 
fluctuations. For c = 1.5 there is a very clear correlation hole at small values of w .  The 
average of the numerical result comes close to the COE prediction: 

c ‘ O ~ ( W )  = 2w - o l n ( l +  ZW) + ( Z ~ T ~ W * N ) - ’  (32) 

also plotted in the figure. The last term in (32) results from the finite cut-off at N [Z]. The 
correlation hole in the numerical result (figure 5(d)) is not quite as deep as the one in the 
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theoretical curve according to (32). We find that this deviation occurs at frequencies below 
0.2 for c = I .5. 

For c = 2 in figure 5(c) the correlation hole is less deep than for c = 1.5 and accordingly 
the deviation from (32) has become larger. For c = 3 in figure 5(b) the hole has been filled 
up to a level 0.8 on the average and for c = 5 in figure 5(a) the average behaviour is very 
close to the one of an integrable case where we expect 

C Jung and T H Seligman 

4. Conclusions 

We have studied a particularly simple scattering system with the following properties: 
(i) the Hamiltonian is integrable and, as a consequence, no topological chaos exists: 
(ii) the classical scattering map is non-integrable and for certain values of a parameter 

clearly displays a chaotic region in the channel space. In this region only very small elliptic 
islands appear which furthermore have large periods. 

The corresponding quantum mechanical problem may be solved in closed form in the 
sense that the S-matrix elements can be given in terms of Fourier coefficients of well known 
special functions. On the other hand if we restrict the S-matrix to channels associated with 
the chaotic region in the channel space we find fair agreement with the COB, which is one of 
the classical ensembles and characteristic of chaos in time-reversal invariant systems. This 
explicitly confirms the result found on general grounds in [14-16]. 

A significant deviation is found in the long-range part of the two-point function as seen 
both in 'ZZ and the low-frequency range of the Fourier transform. Whether this deviation 
is due Lo some general properties or is a property of the particular map we chose is at 
this moment not clear. Note though that we find an excess in fluctuations rather than in 
long-range stiffness and this might simply be due to the remaining islands. 

We may now ask whether the situation of a chaotic scattering map associated with an 
integrable Hamiltonian is very particular or rather general. This depends, as mentioned 
above, on the interplay of the complete Hamiltonian and the free Hamiltonian. If the 
constants of motion responsible for the integrability of the full Hamiltonian are also 
constants of motion for the free Hamiltonian then integrability is readily transferred from the 
Hamiltonian to the scattering map. For example this happens for all rotationally invariant 
systems. Yet we have seen that such a condition-while sufficient-is not necessary. for the 
integrability of the Hamiltonian to entail that of the scattering map. A nice example is the 
Hamiltonian (7) if we choose f(@) = cos(24) + c. In fact almost any small change in the 
Hamiltonian (that does not conserve the symmetry) will lead to a non-integrable scattering 
map even if it leaves the Hamiltonian integrable. We may give a more mathematical 
formulation of this scenario as follows. 

It is appropriate to order scatrering systems into three classes with respect to their 
integrability properties: 

Class 1: M and also H are completely integrable: 
Class 2 M is not integrable, but H is integrable; and 
Class 3: neither M nor H is integrable. 
Class 2 is not a rare exception because the absence of periodic orbits i s  structurally 

stable and this, in turn, implies the stability of the absence of invariant sets. This is true 
except for some pathological behaviour at energy E = 0. Note though that the complete 
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integrability of M is not structurally stable. Moreover, there are many scattering systems 
having topological scattering chaos for a finite interval of positive energy values only. For 
larger values of E there is no longer topological chaos on the energy shell, whereas the 
iterated scattering map is still chaotic. 

Under these circumstances we will have to consider carefully which properties of a 
quantum scattering system are signatures of chaos in the scattering map or of topological 
chaos respectively. Clearly eigenphase statistics are associated with the first and time delays 
with the second property of the classical system. The latter is seen trivially as time delays 
are associated with the energy derivative of the eigenphases which are energy independent 
in our example. Other properties, more accessible to most experiments, will have to be 
examined carefully, which we plan to do in a forthcoming paper. 
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